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The   ,r-cctr.il inilyu;   .1  self Ail joint   md nor ma! 

operators in « Hilbe-t »p*<it ^'l'-ei essentially all the 

information wh:ch i* uaajlly needed iboui tat behavior 

of the   operator.    However.   :n case of genera! linear 

operator* (even bounded) for which there i» no <j.ec;r.ii 

Analysis available, one must look to some other Dicihods 

to describe the structure of the operator. 

The specific consideration of Hilbect spaces which 

is of such help  in the   investigation of self adjoint  and 

nor mil  operators does   not seerr. tr» *>e of  special  im- 

pcrtance   when non-normai  operators are considered 

It is becoming .-..ore and more an accepted opinion that 

for such operators a general theory should be developed 

witbon the framework of Banach spaces. 

One manner of attaching this problem is by the inr 

vestigation  of  invariant sub*paceo.     This method pre- 

sents many difiiculties which have yet to be overcome. 

The basic   problem of U*e  existence of ouch subspacee 

is not settled in gener»i. 

The present report is a coniributionte this problem 

of existence for the special class of completely continu- 

ous operators in general b-mach spaces. 
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WVAWANT SU8SPACES OF CC XPULTELY CONTIMUOUS OPERATORS1' 

bT 

N   AroDiiijB     and     K. T. Smith 

Let   T   be a line A- bounded   parator La a Banach space .8 ,  T(>5)c B 

A closed linear eubspace   -T^ci -P.    is said to be an invariant eubspace oi   T 

If   T«)<z j£ .   •£ ts a proper in *riant eubspace if   (0) «J «£ «$ JJ.    If   2> 

U a KUbert apace and   T   is a self adjoint operator, an invariant sabspace 

reduces   T   and hence the invariant subspacee coincide with the spectral 

•obepa.ees.    However,  if   T   U onl/ assumed to be a normal operator in a 

Hilbert apacu X  ,  then there may be invariant aubepace* which do not 

reduce   T. 

At the pre  cr.i time the investigation of invariant »ubspacea is not very 

advanced iDd see mi to present e isential difficulties.   In recent yean interest 

in this stud/ has increased since the subspacee appear in a natural wty   in 

connection with prediction tbeory ;*ec A. N. Kolmogoroff [dj and N. Wiener 

[*] ).  and its interpretation in terma of uniUry operators in a Hilbert apace. 

Besides those caees which can be reduced essentially to the treatment of 

operators in a finite d.:..* union* I «pa;e, or self adjoint operators in a Hll- 

bert space,  there arc very few fo/ w iicb the invariant subtpace* have been 

completely described.    Such ft description was given by A.Beurling [l] in 

cise of special isometric operator.- u» a Hilbert space.    For general bounded 

operators,  even in a Hilbert apace, it is not aa yet known that tbere always 

exists a proper invariant subspacc. 

Some years ago.  J. von N« \-nann Informed the first author of this paper 

t-iat in the early tnirliee he proven the existence o! proper invariant aubspacea 

for completely continuous operatara is a HUbert apace;   the proof wii never 

published.    In 1950,  the first auttor found a proof of the theorem in this case 

which vised orthogonal projections and hence cou.'d noi oa is;;?«n<j direciiy 

tu 0an.*.cK spaces.    According to . conversation with J. von Neumann, this 

was e**e«UiaIly the earn* proof th .t iee lo^nd earlic r.   Quite recently, the 

U tat author was able to give a proc / fcr reflexive Baiutch spacee (which wa» 

1 Work dose in partial fulfillment of Contract Nonr-*»304 with Office of 
Naval Research and University of Kansas. 
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not published),    la the present paper '.he iast proof is extended to general 

8 an-* eta spaces. 

Since the criguul proof for A. Hubert sp^ce tuffcr - in many aspects 

from the geoe-   1 proof, and sl-.cs it w*i never publisueu.   it will be brief- 

ly indicated    t the conclusion of lhae p*per. 

THf.O *_«« hi .    Lei  S     be * Banach space and   T    * completely coo- 

Uaocui ope.-*toi   ••*   £>   .     There exist proper invari   nt    ub.irac«» oi   T. 

1 

Pr .oi.      Ve sbAii Uxult ourselves to an infinite dimensional s.jacr 

since in finite dirr.ee*ion*l spaces our theorem is s simple consequence 

of the classical thocry of elementary d.ivisora. 
- oo 

Consider an aribtrary   f =1 0   in  lb   .      The closed subspace    [T   :J 

generated by   i   and it* successive i.tugea,    Tf. T f, T  i. ... .    is cleari/ an 

Invariant subspace of   T.    We can therefore limit ourselves to the case where 

CD lJn<C - » • 
This foru.ula implies the following properties: 

(2) 3  is separable. 

(3) All the elements   Tnf   are    4 c   and are linearly independent 

The proof of (2) is immediate.    To prove (3),   suppose that we have the 

relation   o-T    (4Q  T     f •...•• a. T     /     0   with all the coefiicientc* •{ 0.  and 

0 < n. < n, <...  < it,.    It would follow that   T     f « -^—(a.T    f •> ... «a,   ,T        f) 
J    i        I R a 1 k-1 

and hence all the   T  f's    would lie in the ..ubspace generated by those with 

indices   n < n,    which is in contradiction to (I) and the infinite dimension of 3 

In the proof we shall aw. need the weak topology in  £» ,  hence conver- 

gence will mean strong convergence in £  .   We understand complete con- 

tinuity (banach'e total continuity) in the sense that any bounded set is transformed 

I 

1.        In vie* of t»c theory of completely continuous operators as developed by 

S.   Banach [lj,  thia theorem obviously gives a new result only for com- 

pletely continuous opei-tor* which are quasi-ullpotent (i.e.   with r^ectrurn 

reduced to the single point  0).    A simple case of such an operator is given 
r * 

oy the integral operator oi Volterra type      Tf «•   j     f   dx 



by   T  into a relatively compact set   fa act with compact closure). 

, JpitaMC fa every separable Baaach space *« can define an equivalent 

-strictly-Convex aorrr. (i. e.  such that il   x 4 y   and    |x| •-  |y| 4 &«  then 

$**yj.< 1*1 i |y|  (see J. A. Clarkaon pQ } we small suppose,  in vie* of 

(2)  thai the nora in  3    *» etrictly convex.. 

Os?wi&£it an arbitrary finite diroeosian.%1 ««fc*pice «0?B •   *~or every 

x€l*i " w» canconeid*? wb* minimal distance    j>(x, •£)   firona  *  to   X. 

Sine**   j£   ta of finite dimension, the shortest distance is cert-sirly attained 

and fa vie* of the strict eoavcscUy oi the norm it is immediately proved 

that there exists a unique point   Px e.«>£    which realizes this minimal 

distance,  i.e. 

m |x-Px|  -   flx^Xt*   minjjx-yjj . 
._>- ye«£ 

Px   represents an operator iu Jg* , in general noo-iuaear.    We shall call   P 

She metric projection og *£- , or briefly, {when this is not misleading)   the 

projection on £. .    We list hers a tew properties of this projection which are 

immediate consequences of its dcluauior.. 

*-2) P _i* bcrrogenemtst   P(a x) • oPx £0? every  «» 

e-lj P   is quasi»addUi*<t<   fHy^e} P» T • Px  for every j?C4g • 

a-4) fPx-xl < |x>-,     |Pxf < i|*i . 

*-S) j   |x-Px| -  fy-Pyf j c fx-yf. 

««&> a^e/ and   P* i»the projection on £ ." then   fx-Pxf < |x~P*x§. 

Clearly »-$) is the general property of the shortest distance     p(x, Ar\ 

from   x   to a fixed set . <*- 

C on aider now a sequence of closed sub*pace9    «^^<£ 2b  *   '*'* introduce 

the limit faasorior of the sequence    ,£.   as follows; 

W        *fo* *^ * g*S °f fiS x€^   ggglt that for some   xyg»Cfc,   x.~^-x, 

1-        A more classical definition is; >«eaa convergence of  x    to  x  implies 

strong convergence of  Tx     to   Tx.     In reflexive ;wca*, the two 

definition* are equivalent, hat in non-reflexive Banach spaces the 

former Lriu^lie* the latter,   the converge scitg m geoerii f<*is*. 



We now list two properties of this limit which can be immediately verified. 

b-lJ     Lica *£.      it a closed tnbsoace. 

b~£)   IX every   j£.    tg tmue d^meoaionai,   then   at €5 lien *Ck   if and only if 

P.x —^- x,    where   P.    i» the pro^ctien on   *£,,»• 

We PASS now to the actual proof of the theorem 

With   I   aaiisfying   (ii   we construct the k-dimens.^nal subsp-ce 

<*> ^k) -  CTn(Jo"1   ' 
We denote by   P        the metric projection on j£*   '.    By   (L)   it is clear that 

Urn Xtk) « 3     or that   (see   b-2) ) 

(7) P(k*x-^- x   i°X*^    x«r= 3  - 

We consider then the operator   T.    in   a?  '   defined by 

(8) Tkx*P(k)Tx    for      x<E-oC(k). 

k-l        t 

We prove th^t   T-    is linear.    In fact,  if    x « T_ (LT f   ,  then 

IV* « F^T* * plk*( 211.T1*1!) =   ZL t Ti+S£ 4 |.   .P^T*! ; 
* *5"   * o      * . 

wi use here the properties   a-3)   and   a-2).    This shows that   T,    is linear. 

'kl T.    being a linear operator in the k -dimensional space <,'    .  we can 

use the classical result that it may be represented by a triangular matrix. 

which give** that there exists an increasing sequence oi' subspaces, 

where     JL    '      is an invarian   eubspace of   11    of dimension   i. 

(k »V {k i) 
We denote by   F   "   thw projection on .£*   ' ', 

LSMMA,    '   Let  ffc    1    and  (i     -   be sequences of Integers such 
••'--"^ —— f   m !    —~  ; m > —  —^ •< 5* - —rr    "f**T[ r"  ** •— 

that    h     J>f oo    and   U < i     < k    .    further,    k<    f  (J*f .      If _—.       tn ^ ——        s   m *    m     .—     —..       m — 

•w    thee    y<£~ liraJC m   m 

1. The eonsiruction of tubpaces <?} *nd the lemma are valid for *ny 

linear operator   T   (even not continuous}. 



In fact,   we lavt   P Ti      - 1     t± *£*£, On tie other hand. 

l*"U-*  " 

by  4-5)   and (?j 
«*J HO 

U  J t*t  j 
I.    &   ^ Ti     a-;'#'•"*»"'"v-     3       *•**"-       r»   ra T .     ?    i.    .-• 5 y — P ii     i v  ty»h     s ?   ; »*   -r i »;     |    *    G, 

B&T •-•*•   - rn -       E      an aci *       r 

whic> ;jra^* the ic»mi, 

Csft/iury   i.   "    For iti* sequtac*a    *k   ]     &ad    fi    1    satisfying Uw 
""• '•• |l"" "•'   •' .'   " •'•      ••' —      i " *|i       *»  wpw til-      •••"•'«"">•    |    IT* I »i    »   «w 

frg>* iittoaa of the htmm«     **2*«^ ia."*» iavAyi^at subspace oi  T. 

1*    .i   ) (*•    .i   ) 
la fact,  u   x«Utn <<, , i.e.  li few acme   x    <£ ^- * m 

a   —iv- x.  wt have by continuity of   T.    T*   —%r Tx,    and by the lemma, 
aa <k    ,i    > rr 

TxCUm mC 

Corollary   Z. li the Urn of every sabftequsace oi      }«£ J 

"fa. «-(G>» then for »ny bounded  sequence    {*_{ •    x . « *C   " .    w have 

By complete continuity of   7,  the sequence   (x^ ^    it transformed into 

a ralafeiveiy compact sequence 11*    i rf    Therefore it ie enough lo prove that 

ti any aubeequencc   |T*_  { converges to a©me   y, the a  y* CL„   But thie 

• follows-frsm-'dur hy^othsii^,.-. iiece by ifee I* rams,     y£IiJ«X       J      J. 

W« chvo** now ZJB arbitrary real   3   with 

(10) 0<»<i. |^i >o§7g Iff , 
=Sia*«:ridld£-«C     » -we haste-by   (9)   and   a-ft) 

|f j * §f-Pfk'°*f* > fT-F^rg >, .. >|f^Fik'Mf§     0 . 

There exi»t« thereicrs ior each   k     1. 2, ....  - i^jiqae isniex   s(k), 

0 < Uk) < ft,     »uch that 

Lat   u^ k * 1,2i*... t be aa element of   ^<**Mk»*l>     iUCh that 

I.IIMIM       I..IH.--1T. 

1 TW* icroUarv is- «*Ild lor ^ay bou^ied l!ae«*r   T, 

I.        It is oolv ;n this caroiiAry th*t coir-plete continuity i* essen*U.l for our pr&fd. 



-fc„ 

in) |»k| -1,   p|k'MkW«1| - c 

Sach an elewret CAB b* obtained iro-n «n *r>iitrary element 
v-^tk.*(kJ*U     =r(k.lfHJ   fc ,,,„ i       piLi(<»)   '.-l,      -,(k.£(k))   . v<£*.. ~ »_ by putting      u,  *   |;v-P v|      (v —P v) , 

'prpfm-rtf (12) i* then proved by rasing   *-£} ±&&   A-.), 

SSnce the dimension* of   i^*k»i*k^   «*   ^^-CM*!)   ^mmr by if ev<!ry 

«lenient   y«S«C^ *^ "   i» r*frr**«ntable to & unique  uy ia the form   y * x * 6u. 

with   x * P***"  *'y-       Correspondingly,   mm shall put 

W« have,  by   a-4) 

114) |xj| -  |P(k.UW»plk.ilW.l)f| < 4§f g,      fx^ < 4|Tf| . 

We prove now the following statements: 
(k   ,Uk   )} m      m I.    For every sequence   k     * as,    lim *£ -'    3   . 

II.    For some sequence   k(    ^ aa,    iimX. T *   ' 

III.   If for every ttmucce   k    -"'*' aa, lim«C « (0), then for every 
       «    |k.      Uk.    >*1>  ! *" 
sequence   k'   y^ m,    lira X 4 -B » 

Proof of I.     U   UmZ « ^S> .  then by   b-2>   P   m      m   -^ f 

which contradicts (11). 

Proof of a.    If our . tiieroent were not true,   we ivoUd have &y Corollary 2 

that the bounded sequence   ^ j><kui<*> •!>£ |    jtee   a.4)> i8 tr .asforiucd into * 

sequence     l.TP<|r*t(k,*l*f |    converging to 0.      Since   VI -  ;if-Ptk i*k>+I>f)   + 

"Plk'i(kl + I)f,     we get    |Tf| - limlT(f-P(Xitk>+I)f)| < Ito inf|jT|  jf-Pik*i{^+1>£| 

which, by fU).  Rives    |Tf| <&iT|   |f|    in contradiction u   (10). 

(k,
m,i{krj4i) 

Proci oi  ill.    Suppose that for tame   ik'    \ ye <x>,    lit-. JL -' *£> . 

<K«_,i(k'U'%) tkm*^k*    W 
f*y   V-i) *B>»V«    P    "* * —>   £     and   P     m       m      Tf -fy-Tf.    iv 

(i 5)   we have shea    t a lim^, • (*k, *^t  ),     Tf * lim|x'kl * 8V a.,  );     n*nv«t 

m      m   m m        «  ra. 

Tf -HmfTx,., •0k,Tok,  )   and   TZf - lim(T*kl • p'k, T^,   }.      ly |I4)   and 
on      m      rn rr.       m      m 
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Coroliary I.   it foi.ic.wi   Tf * ;lEiJ.   Tu, ,   ,      T  (- limP'Tu, ,   .    Hence 
rr      m mm 

3', .    /  3   .      converge to some   >    aj*d   T^f = \ Tf   In contradiction to 13). 
rr.' m 

We achieve the proof of OAT theorem a* follows.    If there la any se- 

quence   V.     ,.>" UJ   *nch thai    Tj « tirr, i,. 4 (0),  then In view of 
• »* •aaaasansj 

)'. itc;".eni   I    m.i Corollary  1.     t) w * proper invariant subapacr      H there 

ia no such sequence  « k     ;   then bv Statement  11 we choos* A sequence 

*'     ^a>   ao that       £>'      lirr JL 4(0).    By Statement  III   and 

Corollary   1.     £;   :» then   : proper invariant subsp.tce. 

Proof in caae oi .   Hilb^rt ipAce ^  .   In this proof we use weak, and 

lit >ng convergence of element* aoo o^tra'.orj in "B ,  denoted by the symbols 

*»      and   —Sy» .    The *implifyii»g feature in the present case is '.'at the me- 

tric projections coincide with utual orthogonal projections and hence are 

linear.    The    «£       can now he any increasing sequence of subpeac*    with 

union dents in 5;   I   may be an/ element 4 0   and belonging to   JC     •    The 

operator    T.    is now the reatriction of   P^TP*^   to   j(}  \    The subs pace a 

j£ are dolined as before. ..       .    . 

The lemma ia replaced by the following:   I£ P   m   m —-  Q,  then 

OTCl * TQ   (•' * operator   Q   is secesaarily positive with bound   <1>. 

in the proof the fact is used tlvat   r(k,i'TPtk,l) - p<k>Tp(M)   Aftd ^^ 

P<kl-^t 
Aa Corollary,   we obtain that;    I(Q(^)c.'S   where    $    is the closed 

«ubapace    f all %'a <*tth   Ox      x     Hence    .*!>    is a proper invariant s ibapace 

except %h?n   0*0   or   Q * I,   or tUe wr.«n    0 4 Q H *   -m*    *"   v*r     -">«• on 

the range ->f   Q.    In the  laat ca«r  every or.e-dimenannal ;.ub«pav.e of   Q(B) 

i* clearly an invariant subspace. 

The p»oof is continued by def .ning    .(k)   as in  (li);   the »: *ri, :r   a   need 

not be restricted by the occond fart of (*0).    We then choosr a subsequence 
, <*    .i(«    )) 
Ik    )     so that for some   G   and   Q\        P m    —s»-   Q.      a*•; 
(km*i<km)*t) 

P — •-—   Q'.    In view of the. corollary,   it remains onJi» •>  nvesti- 

gate the case when both   O   ar.d   C    -*re    C   or   I.    Herc we u>; thw general 

lemma that:    J projection* converge   veakiy to a projection,   they e ,;.verfle 

strongly 

"I 

. 



W« thw, prove the fefeoviat #Mtc«aii:    !)    O 4 ! ;     ^V   O' 4«; 
ail a^Q* o,  o«n a ?j i 

The j>ro«f s <ji  I)   *PS  li)   Are (raroed&i**    Jcr lb*jj>roo& ol US}   *n» 

notice M**t othp*'T*r:cc   i     Q*~Q,  >s4 wsjaee   i  *-vu!4 lie tlas «tro»g umtt of 

She o*&-4imea*ion*i ^rojact.jn*    P *        «P . ' «r&ich U 

fagpWHrtrtl^  Thia completes the proof. 
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